216
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption and Desorption of Boron as Influenced by Soil Properties in Temperate Soils of Lesser Himalayas

&
Pages 683-698 | Received 02 Oct 2012, Accepted 03 Nov 2014, Published online: 16 Mar 2015
 

Abstract

Boron (B) adsorption increased with increasing concentration. Langmuir adsorption isotherm was curvilinear. The maximum value of adsorption maxima (b1) was observed Sagipora soil and maximum bonding energy (k) constant was in Anantnag soil. The Langmuir isotherm best explains the adsorption trend at low adsorbent concentrations. A significant correlation among b1, clay, and cation exchange capacity was observed. Linear affiliation was observed in all the soils at all concentration, indicating that B adsorption data conform to the Freundlich equation. Soils with greater affinity for B adsorption, like Sagipora, tended to desorb less B. Boron desorption was positively and significantly correlated with sand content and negatively with clay content and cation exchange capacity. The maximum value of 50.76 mg g−1 for desorption maxima (Dm) was observed in Sagipora soil, and mobility constant (Kd) was maximum in Khag soil (0.412 ml kg−1).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.