1,562
Views
118
CrossRef citations to date
0
Altmetric
Articles

Effect of Silicon Fertilization on Growth, Yield, and Nutrient Uptake of Rice

, , , &
Pages 284-290 | Received 12 Aug 2014, Accepted 01 Oct 2015, Published online: 02 Feb 2016
 

ABSTRACT

A field experiment was conducted to study the effect of silicon (diatomaceous earth, DE) fertilization on growth, yield, and nutrient uptake of rice during the kharif season of 2012 and 2013 in the new alluvial zone of West Bengal, India. Results showed that application of silicon significantly increased grain and straw yield as well as yield-attributing parameters such as plant height (cm), number of tillers m−2, number of panicle m−2, and 1000-grain weight (g) of rice. The greatest grain and straw yields were observed in the treatment T6 (DE at 600 kg ha−1 in combination with standard fertilizer practice (SFP). The concentration and uptake of silicon, nitrogen (N), phosphorus (P), and potassium (K) in grain and straw were also greater under this treatment compared to others. It was concluded that application of DE at 600 kg ha−1 along with SFP resulted increased grain, straw, and uptake of NPK.

Additional information

Funding

Authors are highly grateful to Agripower Australia for funding the work through the Network Silicon project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.