241
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Redistribution of Different Organic Carbon Fractions in the Soil Profile of a Typical Chinese Mollisol with Land-Use Change

, , , , &
Pages 2369-2380 | Received 24 Jul 2016, Accepted 21 Feb 2017, Published online: 11 Dec 2017
 

ABSTRACT

Soil organic carbon (SOC) content depends significantly upon changes in land use and vegetation cover. This study aimed to examine the redistribution of whole soil OC, water-soluble OC (WSOC), and different density-separated OC fractions in soil profiles of 0–100 cm under different land uses and to elaborate the mechanism of C sequestration in response to the land use change. The land use types include maize plots with or without chemical fertilizer application (i.e., Maize-nitrogen, phosphorus, and potassium (NPK) and Maize-NF plots), plots with vegetation removed (No Vegetation), plots with grass (Grass), and alfalfa plant (Alfalfa). These plots used to be maize cropping system with NPK fertilizer for many years before 2003. Significant difference in SOC content generally occurred in soil layers of 0–40 cm among the different plots after 11 years of land-use change. Long-term continuous maize planting decreased SOC content; the significant SOC decrease occurred in Maize plot in the range of 9.3–23.4% for different soil layers compared with the initial soil sampled in 2003. In addition, SOC in Maize plot decreased by 3.6% and 8.5% at top two soil layers, respectively, in comparison with No Vegetation plot. The similar reduction of OC was observed in heavy OC fractions. The calculated sensitivity index for OC decreased in the order of light fraction > water-soluble fraction > the whole soil > heavy fraction. Therefore, the young and labile carbon fractions are much sensitive to land use change relative to the old and recalcitrant carbon fractions. This study indicated that land use changes led to a redistribution of SOC in soil profile, particularly at top soil layers, and conversion from arable land to natural grass cover or nitrogen-fixation plant cultivation such as alfalfa led to the enrichment of SOC at different depths of soil profile.

Funding

This work was supported in part by a grant from the National Natural Science Foundation of China (41301312, 41371296, and 41571219) and Young Scientists’ Group of China (DLSXZ1605).

Additional information

Funding

This work was supported in part by a grant from the National Natural Science Foundation of China (41301312, 41371296, and 41571219) and Young Scientists’ Group of China (DLSXZ1605).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.