215
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Boron on Antioxidant Response of Two Lentil (Lens culinaris) Cultivars

&
Pages 1881-1894 | Received 11 Feb 2016, Accepted 22 Sep 2017, Published online: 04 Dec 2017
 

ABSTRACT

Boron (B) is an essential micronutrient for plants through paticipating key reactions such as reproduction, development, and regeneration. Similar to its deficiency, its over-concentations possess toxic effects on plant growth. In this work, possible boron toxicity was researched through evaluating alaterations in antioxidant enzymes, oxidative stress biomarkers, and chlorophyll contents for two types of lentil species as red (native) and green (winter flake 11) lentil (Lens culinaris L.cv) cultivars, which are indigenous to Turkey. Ten days old seedling lentil plants were subjected to low as 0.5, 1.0 mM and high 2.0 and 5.0 mM boric acid treatments for 7 days. B worked as a growth-promoting nutrient for 0.5, 1.0, and 2.0 mM concentration by enhancing length and weight of both shoot and root tissues, while it started showed its suppression effect on these tissues at 5-mM cocentration, which were obtained more dramatic for green lentil in comparison to red lentil. In contrast to this, oxidative stress markers such as MDA, H2O2, and proline concentrations showed increasing trend for 0.5, 1.0, 2.0, and 5.0 mM B treatment, accompanied with a change in photosynthetic pigment concentrations (p < 0.01). MDA in red lentil shoot control was 30,3871 (μmol/gFW) and it was significantly increased to 36,5806 and 51,7414 by the 2.0 and 5.0 B rates, respectively. However, enzymes in anti-oxidation metabolism include superoxide dismutase (SOD), guaiacol peroxidase (GPX), lipoxygenase (LOX), glutathione peroxidase (GSH-Px) activities were obtained higher in high-B-treated groups, while decreased and stable activities were obtained for catalase (CAT) and ascorbate peroxidase (APX) enzymes. CAT and APX activities were higher than those were obtained for 2.0 and 5.0 mM B treatments in both root and shoot tissues. The lentil species manipulated their metabolism to suppress B-stress, and enhanced growth in shoot and root tissues up to 5-mM B stress even though oxidative stress markers showed increasing trend from low B concentrations, 1.0 mM. Therefore, B stress can be claimed as “doubled edge sword” for these lentil species.

Abbreviations

AOS, active oxygen species; APX, ascorbate peroxidase; CAT, catalase; DAB, diamino-benzidine tetrahydrochloride; DMSO, dimethyl sulfoxide DW, dry weight; EDTA, ethylenediamine-N,N,N0,N0-tetraacetic acid; FW, fresh weight GPX, guaiacol peroxidase; GSH-Px, glutathione peroxidase; LOX, lipoxygenase; MDA, malondialdehyde; NBT, nitroblue tetrazolium; PEG, polyethylene glycol; ROS, reactive oxygen species; SOD, superoxide dismutase; H2O2, Hydrogen peroxide;

Funding

This work was supported by Scientific Research Projects Committee of Celal Bayar University [grant number 2008-085].

Additional information

Funding

This work was supported by Scientific Research Projects Committee of Celal Bayar University [grant number 2008-085].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.