273
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Interactions of Salinity Stress and Flower Thinning on Tomato Growth, Yield, and Water Use Efficiency

, , , &
Pages 2601-2611 | Received 27 Dec 2016, Accepted 19 Sep 2017, Published online: 26 Dec 2017
 

ABSTRACT

This study was conducted to investigate the effects of salinity stress and flower number on growth, yield, water use efficiency (WUE), and fruit quality of cherry tomatoes cultivated under soilless conditions. The experiment was conducted in a plastic house (5-m wide × 11-m long) located in Gifu University. The seedlings were transplanted in a randomized complete block design with six plants per treatment (NT1 and ST1 were with four plants), giving a total of 44 plants in 22 pots (two plants per pot). Two different salinity levels [no-salinity and salinity with electrical conductivity: 0.8 and 3.0 dS m−1, respectively] and four flower number treatments (8, 13, 18, and free per truss) were investigated in the experiment. The results showed that salinity stress negatively affected tomato growth, yield, and marketable yield, but improved tomato fruit quality. The number of flowers had no effect on tomato growth variables and WUE, but the yield significantly increased with increasing flower number. However, the fruit quality was decreased with increased flower number. A reasonable control for fruit load can increase marketable yield in commercial cultivation. Under salinity stress conditions, properly increasing the number of flowers can avoid yield reduction.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.