397
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Antifungal and Plant Growth Promoting Activities of Indigenous Rhizobacteria Isolated from Maize (Zea mays L.) Rhizosphere

ORCID Icon, ORCID Icon, &
Pages 88-98 | Received 22 Nov 2016, Accepted 24 Aug 2017, Published online: 10 Jan 2018
 

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) enhance the plant growth directly by assisting in nutrient acquisition and modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens. The aim of this study was to select effective PGPR from a series of indigenous bacterial isolates by plant growth promotion and antifungal activity assays. This study confirmed that most of the isolates from maize rhizosphere were positive for PGPR properties by in vitro tests. Azotobacter and Bacillus isolates were better phosphate solubilizers and producers of lytic enzymes, hydrocyanic acid (HCN), and siderophores than Pseudomonas. Production of indole-3-acetic acid (IAA) and antifungal activity were the highest in Azotobacter, followed by Bacillus and Pseudomonas. The most effective Azotobacter isolates (Azt3, Azt6, Azt12) and Bacillus isolates (Bac10, Bac16) could be used as PGPR agents for improving maize productivity. Further selection of isolates will be necessary to determine their efficiency in different soils.

Acknowledgments

This research was supported by the Ministry of Science and Technological Development of the Republic of Serbia, project TR31073: “Improving maize and sorghum production under stress”.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.