2,125
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

An Evaluation of the Loss-on-Ignition Method for Determining the Soil Organic Matter Content of Calcareous Soils

, , &
Pages 1541-1552 | Received 29 Nov 2015, Accepted 01 May 2018, Published online: 21 May 2018
 

ABSTRACT

The Loss-on-Ignition (LOI) method is widely employed for measuring the organic matter (OM) content of soil samples. There is a risk of carbonate losses when calcareous soil samples are analyzed through LOI, but this has never been investigated in detail. Moreover, a worldwide standard protocol for determining the carbonate content of soils is not available. The aims of this study were (i) to evaluate two commonly employed carbonate analysis procedures using calcareous and non-calcareous soil samples: the gravimetric method with (GMF) and without (GM) the addition of the antioxidant iron(II) chloride (FeCl2) and the acetic acid dissolution procedure (AAD); (ii) to evaluate the effect of ignition temperature on losses of pure calcite, calcite-quartz and calcareous soil samples. We found that the average apparent carbonate content of the non-calcareous soils was greatest for the GMF method followed by the AAD procedure. The GM method showed the smallest apparent carbonate contents. For the calcite-quartz sand mixture, ignition losses started at 600°C and increased with temperature in a sigmoidal way. LOI values stabilized at 750°C when 80% of the carbon dioxide was released. We recommend the GM procedure for carbonate analysis because the apparent carbonate contents of the non-calcareous soil samples were smallest. Furthermore, we recommend an LOI temperature of 550°C because at this ignition temperature 99.8% of the total calcite fraction remains in the soil samples.

Supplemental data

Supplemental data for this article can be access on the publisher’s website.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.