153
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Thiobacillus, sulfur, and phosphorus on the yield and nutrient uptake of canola and the chemical properties of calcareous soils in Iran

, , , , &
Pages 1671-1683 | Received 09 Aug 2017, Accepted 01 May 2018, Published online: 04 Jun 2018
 

ABSTRACT

This factorial experiment consists of four levels of sulfur+Thiobacillus and three levels of triple superphosphate arranged in a completely randomized block design in three regions. With an increased sulfur+Thiobacillus and phosphorus (P), grain yield, phosphorus, iron (Fe), and zinc (Zn) uptake of canola increased in Qom and Mazandaran. Combined treatments of S2000T40 and P100% showed these properties most. In Safiabad, S1000T20 resulted in a significant increase of P, Fe, and Zn uptake of canola, and no significant effect was found on the grain yield. The highest Fe and Zn concentrations in Qom soil was measured in S2000T40. In Safiabad, maximum Fe concentration in soil was registered by S1000T20 and P65%. The minimum soil pH of Qom and Mazandaran was recorded by S1000T20 and S2000T40, respectively. The effect of sulfur and Thiobacillus on nutrients uptake and canola yield was good and indicates its potential for alleviating the impacts of calcareous soils.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.