53
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Unraveling the Effect of Differentially Applied Manganese on Root Dynamics and Efficiency of Diverse Rice Genotypes

&
Pages 2357-2368 | Received 14 Jun 2018, Accepted 06 Jul 2018, Published online: 06 Aug 2018
 

ABSTRACT

Increasing manganese (Mn) deficiency in soils emphasizes strategies for breeding genotypes with increased Mn efficiency. The present investigation evaluated Mn efficiency of 11 rice genotypes w.r.t. basal, foliar, and basal+foliar Mn application in field and glasshouse conditions. The genotypes with B + F application had higher leaf area (LA), SPAD index, root length (RL), root surface area (RSA) and mean half distance between roots (MHDR), and ultimately higher Mn efficiency under both growing conditions. The results of correlation analysis depicted strong positive relation between grain yield and LA (0.60) and SPAD index (0.53). The root characteristics viz., RL, RSA, and MHDR could, respectively, explain 76%, 77%, and 83% of variation in grain yield emphasizing the importance of superior root geometry in regulating mechanism pertaining to differential Mn efficiency. The breeders could select the traits for better root geometry along with high yield in breeding programs to develop Mn efficient genotypes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.