131
Views
11
CrossRef citations to date
0
Altmetric
Articles

Lead Phytostabilization and Cationic Micronutrient Uptake by Maize as Influenced by Pb Levels and Application of Low Molecular Weight Organic Acids

, , &
Pages 1887-1896 | Received 01 Dec 2018, Accepted 27 Jun 2019, Published online: 29 Jul 2019
 

ABSTRACT

Phytoremediation is a promising technique to clean up toxic heavy metals including lead (Pb). A greenhouse trial was conducted to evaluate the effectiveness of citric, succinic, malonic and oxalic acids on micronutrient uptake and phytoremediation of Pb contaminated soil by maize under different Pb levels. Mean root and shoot dry weights of maize decreased with increasing Pb levels. At the lowest Pb level, application of citric and oxalic acids caused increase effects on root and shoot dry weight, respectively, as compared to the absence of organic acid. As Pb levels increased, micronutrient uptake in maize shoot decreased. Among the studied organic acids, only the application of oxalic acid increased uptake of all micronutrients in maize shoot as compared to control at the lowest Pb level. Mean root and shoot Pb concentration and uptake and also uptake index noticeably increased at the highest Pb level. All tested acids increased Pb concentration and uptake in maize root. At the highest Pb level, organic acids, except for citric acid, significantly increased shoot Pb uptake and uptake index as compared to the absence of organic acid. Translocation factors less than 1, demonstrated that most of Pb taken up by maize accumulated in root as compared to shoot. According to results reported herein, application of malonic, succinic and oxalic acids is a good strategy to enhance phytostabilization potential of Pb by maize in pb-polluted soils.

Acknowledgments

Authors would like to appreciate Shiraz University for providing research facilities.

Additional information

Funding

This work was supported by the Shiraz University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.