293
Views
7
CrossRef citations to date
0
Altmetric
Articles

Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization in Soils: Relationship with Activities of Arylamidase and Amidohydrolases

ORCID Icon &
Pages 1757-1766 | Received 19 Apr 2020, Accepted 15 May 2020, Published online: 19 Jul 2020
 

ABSTRACT

This study investigated the relationship between a recently proposed alkaline hydrolysis method for estimating the chemical index of nitrogen (N) mineralization potential of soils and the activities of arylamidase and four amidohydrolases involved in hydrolysis of organic N (ON) in soils. Nitrogen mineralization was studied in 13 soils from uncultivated fields in Iowa, USA, by direct steam distillation of 1 g field-most soil treated with 1 M KOH or 1 M NaOH. The distillate was collected in boric acids, which was changed every 5 min for a total of 40 min. The NH4+-N in the distillate was determined by titration with 0.005 M H2SO4. The cumulative amounts of N hydrolyzed were fitted to the first-order exponential equation to determine the “potentially hydrolyzable N (Nmax)” for the soils. The activities of arylamidase, L-asparaginase, L-glutaminase, amidase, and L-aspartase were assayed at their optimal pH values. Results showed that estimated Nmax values were strongly correlated with the activities of arylamidase and amidohydrolases. The activities of arylamidase and the amidohydrolases were significantly correlated, indicating that the activities of the two groups of enzymes are coupled in mineralization of ON in soils. Based on the specificity of enzyme reactions and the strong relationship between estimated Nmax values and the activities of arylamidase and amidohydrolases, we concluded that similar amide-N bonds were susceptible to enzymatic and alkaline hydrolysis, and that alkaline hydrolyzable ON can be used as an index of N mineralization in soils.

Acknowledgments

This research was supported, in part, by the Biotechnology By-products Consortium of Iowa, USA.

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Supplemental data for this article can be accessed on the publisher’s website.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.