298
Views
6
CrossRef citations to date
0
Altmetric
Articles

Can Nitrogen Source and Nitrification Inhibitors Affect In-Season Nitrogen Supply?

, , , , , , ORCID Icon, , , , , & show all
Pages 2189-2204 | Received 16 Mar 2020, Accepted 26 Aug 2020, Published online: 21 Sep 2020
 

ABSTRACT

This study sought to identify whether piggery effluent-derived nitrogen sources can be formulated with urea and nitrification inhibitors to better synchronize nitrogen (N) supply with crop demand than conventional urea fertilizer alone. A 288 pot pasture growth and leaching growth accelerator trial (5 pasture cuts) was completed with a factorial treatment structure of three N sources (2.63 g N [kg soil]−1 applied as 100% urea-N, 8% struvite-N + 92% urea-N, and 8% piggery pond sludge-N + 92% urea-N), five rates of three nitrification inhibitors (including 3,4-Dimethylpyrazole phosphate, DMPP; limonene+ethanol; and dicyandiamide, DCD), and matrix encapsulated forms of these inhibitors. Applying a combination of piggery sludge with urea increased N uptake during the first 4 weeks of plant growth (by 65%), though total N uptake throughout the trial (22 weeks) did not differ across the N-sources. The microbial community of the soil to which the sludge was added was significantly different from the un-amended soil at the conclusion of the trial. All inhibitor formulations significantly decreased leaching losses of mineral-N relative to the control (by 14 to 61%). The use of DMPP decreased initial nutrient uptake, deferring uptake until later in the experiment. Inhibitor addition resulted in microbial community effects that persisted throughout the trial. The study demonstrated that a piggery-derived N-source and a nitrification inhibitor can be used to manipulate plant N uptake to occur later or earlier in a growing period with equal cumulative uptake, achieving an 11% increase in residual N store, and decreased N leaching losses.

Acknowledgments

We’d also like to thank Dr Paul Luckman (University of Queensland) for his assistance in the preparation of the starch hydrogel used in these studies.

Highlights

  • A small proportion of N as piggery pond sludge improved plant establishment.

  • These additions increased soil residual N for the same overall uptake.

  • Nitrification inhibitors can defer uptake and decrease N leaching.

  • Sludge addition and inhibitors led to different microbial communities at 22 weeks.

Supplemental Material

Supplemental data for this article can be accessed on the publisher’s website.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was funded by Australian Pork Limited and the Department of Agriculture and Fisheries, Queensland [Project No: 2014/446].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.