219
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Data-based Models (ANN, ANFIS and SVR) for Estimation of Exchangeable Sodium Percentage (ESP) of Bafra Plain Soils

ORCID Icon &
Pages 199-213 | Received 12 Feb 2021, Accepted 14 Mar 2021, Published online: 06 Oct 2021
 

ABSTRACT

The objective of the present study was to estimate the exchangeable sodium percentage (ESP) of the soil from the Bafra plain utilizing easily determined soil characteristics (EC and pH) with the use of artificial intelligence-based models. A total of 448 soil samples were taken from different points of the study area. Artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and support vector regression (SVR) models were developed and compared. The present database was randomly divided into training and test data sets (70:30). Coefficient of determination (R2), normalized root mean square error (NRMSE), normalized mean absolute error (NMAE), Nash and Sutcliffe model efficiency (NS) and Akaike’s Information Criterion (AIC) were used as statistical performance indicators to assess the accuracy of the models. Present findings revealed that both ANN (R2 = 0.91, NMAE = 0.21, NRMSE = 0.05, NS = 0.91 and AIC = 191.86) and ANFIS (R2 = 0.91, NMAE = 0.21, NRMSE = 0.05, NS = 0.91 and AIC = 195.51) models had greater general estimation performance than SVR (R2 = 0.89, NMAE = 0.49, NRMSE = 0.08, NS = 0.74 and AIC = 334.57) model. Comparative assessments revealed that ANN and ANFIS approaches could successfully be used in estimation of ESP from EC and pH data. It was concluded based on present findings that artificial intelligence-based techniques could reliably be used in estimation of soil ESP as a promising alternative of traditional approaches.

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) [116O715].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.