1,796
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

The relationship between heart rate and oxygen uptake during non-steady state exercise

&
Pages 1578-1592 | Published online: 10 Nov 2010
 

Abstract

In this study the validity of using heart rate (HR) responses to estimate oxygen uptake ([Vdot]O2) during varying non-steady state activities was investigated. Dynamic and static exercise engaging large and small muscle masses were studied in four different experiments. In the first experiment, 16 subjects performed an interval test on a cycle ergometer, and 12 subjects performed a field test consisting of various dynamic leg exercises. Simultaneous HR and [Vdot]O2 measurements were made. Linear regression analyses revealed high correlations between HR and [Vdot]O2 during both the interval test (r= 0.90±0.07) and the field test (r= 0.94±0.04). In the second experiment, 14 non-wheelchair-bound subjects performed both an interval wheelchair test on a motor driven treadmill, and a wheelchair field test consisting of dynamic and static arm exercise. Significant relationships were found for all subjects during both the interval test (r = 0.91±0.06) and the field test (r= 0.86±0.09). During non-steady state exercise using both arms and legs in a third experiment, contradictory results were found. For 11 of the 15 subjects who performed a field test consisting of various nursing tasks no significant relationship between HR and [Vdot]O2 was found (r= 0.42±0.16). All tasks required almost the same physiological strain, which induced a small range in data points. In a fourth experiment, the influence of a small data range on the HR-[Vdot]O2 relationship was investigated: five subjects performed a field test that involved both low and high physiological strain, non-steady state arm and leg exercise. Significant relationships were found for all subjects (r = 0.86±0.04). Although the r-values found in this study were less than under steady state conditions, it can be concluded that [Vdot]O2 may be estimated from individual HR-[Vdot]O2 regression lines during non-steady state exercise.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.