735
Views
22
CrossRef citations to date
0
Altmetric
Articles

The effect of fatigue on trunk muscle activation patterns and spine postures during simulated firefighting tasks

, , , &
Pages 1032-1041 | Published online: 19 Jun 2008
 

Abstract

The purpose of this study was to determine the effect of a fatiguing task (3 min intense stair climbing) on the adopted spinal postures and trunk muscular activation patterns during three highly physically demanding simulated firefighting tasks. Following the fatigue protocol, it was observed that individuals adopted significantly greater spinal flexion (16.3° maximum prior to fatigue as compared to 20.1° post fatigue) and displayed reduced abdominal muscle activation as compared to before the fatigue protocol (mean ranging from 16.6% maximum voluntary contraction (MVC) to 30.6% MVC prior to fatigue as compared to ranging from 14.6% MVC to 25.2% MVC post fatigue). The reduced abdominal activation may be due to a reduction in co-contraction during these tasks, which may compromise spinal stability. Reduced co-contraction combined with the increased spinal flexion may increase the risk of sustaining an injury to the low back.

Acknowledgements

The authors wish to acknowledge UW Fitness at the Lyle Hallman Institute for Health Promotion, University of Waterloo, for the use of their firefighting testing facilities. Dr Jack Callaghan is supported by a Canada Research Chair in Spine Biomechanics and Injury Prevention.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.