559
Views
12
CrossRef citations to date
0
Altmetric
Article

Impact of parallax and interpupillary distance on size judgment performances of virtual objects in stereoscopic displays

, &
Pages 76-87 | Received 21 Oct 2016, Accepted 16 Sep 2018, Published online: 08 Nov 2018
 

Abstract

Effective interactions in both real and stereoscopic environments require accurate perceptions of size and position. This study investigated the effects of parallax and interpupillary distance (IPD) on size perception of virtual objects in widescreen stereoscopic environments. Twelve participants viewed virtual spherical targets displayed at seven different depth positions, based on seven parallax levels. A perceptual matching task using five circular plates of different sizes was used to report the size judgment. The results indicated that the virtual objects were perceived as larger and smaller than the corresponding theoretical sizes, respectively, in negative and positive parallaxes. Similarly, the estimates from participants with small IPDs were greater than the predicted estimates. The findings of this study are used to explain human factor issues such as the phenomenon of inaccurate depth judgments in virtual environments, where compression is widely reported, especially at farther egocentric distances. Furthermore, a multiple regression model was developed to describe how the size was affected by parallax and IPD.

Practitioner Summary: The study investigates the effects of parallax and interpupillary distance on size perception of virtual targets in a stereoscopic environment. Virtual objects were perceived as larger in negative and smaller in positive parallax. Also, size estimates were greater than the theoretical sizes for participants with smaller IPD. A multiple-regression model explains the impact of parallax and measured IPD.

Abbreviations
IPD=

interpupillary distance

VR=

virtual eality

HMD=

head mounted-displays

2AFC=

two-alternative forced choice

IOD=

interocular distance

PD=

pupillary distance

ANOVA=

analysis of variance

Additional information

Funding

This work was supported by the Ministry of Science and Technology of Taiwan (NSC 103-2221-E-011-100-MY3).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.