1,626
Views
40
CrossRef citations to date
0
Altmetric
Articles

Human factors and ergonomics systems-based tools for understanding and addressing global problems of the twenty-first century

ORCID Icon, &
Pages 367-387 | Received 28 Nov 2018, Accepted 12 Jul 2019, Published online: 08 Aug 2019
 

Abstract

Sustainability is a systems problem with humans as integral elements of the system. However, sustainability problems usually have a broader scope than socio-technical systems and therefore, require additional considerations. This requires a fuller integration of complex systems understanding into the systems analysis toolset currently available to human factors and ergonomics. In this paper, we outline these complex systems requirements necessary to tackle global problems such as sustainability and then assess how three common systems analysis tools (i.e. Accimap, System Theoretic Accident Mapping and Processes, and Cognitive Work Analysis) stand up against these revised criteria. This assessment is then further explored through applying two of these tools (i.e. Accimap and System Theoretic Accident Mapping and Processes) to a transnational food integrity system problem. This case study shows that no single systems analysis method can be used in isolation to help identify key insights for intervention and that new methods may need to be developed or existing methods need to be adapted to understand these dynamic, adaptive systems. The implications for the further development of systems analysis tools are discussed.

Practitioner summary: We assess the applicability of existing human factors and ergonomics systems-analysis tools for examining global problems and for identifying points to intervene in these systems. We comment on what extensions and further work will be required to enable human factors and ergonomics to intervene effectively.

Abbreviations: HFE: human factors and ergonomics; CO2: carbon dioxide; CO: carbon monoxide; O3: ozone; SSoS: sustainable system-of-systems; BSE: bovine spongiform encephalopathy; STAMP: systems-theoretic accident model; CWA: cognitive work analysis; WDA: work domain analysis; ConTA: control task analysis; StrA: strategies analysis; SOCA: social and organisation cooperation analysis; SOCA-CAT: social and organisation cooperation analysis contextual analysis template; SOCA-DL: social and organisation cooperation analysis decision ladder; WOP: work organisation possibilities; FRAM: functional resonance analysis method; US FDA: United States Food and Drug Administration; UK: United Kingdom; NET-HARMS: networked hazard analysis and risk management system; PreMiSTS: predicting malfunctions in socio-technical systems

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.