216
Views
0
CrossRef citations to date
0
Altmetric
Articles

Maximal isometric force exertion predicted by the force feasible set formalism: application to handbraking

, , &
Pages 1551-1562 | Received 13 Apr 2018, Accepted 25 Mar 2019, Published online: 09 Sep 2019
 

Abstract

The aim of this study was to test the capacity of the force feasible set formalism to predict maximal force exertion during isometric handbraking. Maximal force exertion and upper-limb posture were measured with a force sensor embedded in a handbrake and an optoelectronic system, respectively. Eleven subjects participated in the experiment which consisted of exerting the maximal force in isometric conditions considering five hand brake positions relative to the seat H-point. Then, maximal force was predicted by the force feasible set obtained from an upper-limb musculoskeletal model. The root-mean-square (RMS) of the angle between measured and predicted forces was 8.4° while the RMS error (RMSE) for amplitude prediction was 95.4 N. However, predicted, and measured force amplitudes were highly correlated (r = 0.88, p < 0.05, slope = 0.97, intercept = 73.3N) attesting the capacity of the model to predict force exertion according to the subject’s posture. The implications in the framework of ergonomics are then discussed.

Practitioner summary: Maximal force exertion is of paramount importance in digital human modelling. We used the force feasible set formalism to predict maximal force exertion during handbraking from posture and anthropometric data. The predicted and measured force orientation showed a RMS of 8.4° while amplitude presented a RMSE of 95.4 N with a strong correlation (r = 0.88, p < 0.05, slope 0.97, intercept 77.3 N).

Acknowledgments

The authors would like to thank François Guillon for the suggested corrections.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement n°218525. This work was also financially supported by a grant [6533-2013] from the Ministry of National Education (France).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.