732
Views
8
CrossRef citations to date
0
Altmetric
Articles

A shoe-insole to improve ankle joint mechanics for injury prevention among older adults

ORCID Icon &
Pages 1271-1280 | Received 23 Feb 2020, Accepted 11 Apr 2021, Published online: 30 Jun 2021
 

Abstract

Technologies to assist senior individuals with active walking are important. This experiment aimed to investigate whether a customised insole geometry would reduce the risk of falls and locomotive injuries. The tested insole incorporated a built-in inclination to assist ankle dorsiflexion (2.2°) and eversion (4.5°). Twenty-six older adults and 30 younger counterparts undertook gait assessment with and without the experimental insole while 3 D motion capture and force plates recorded gait. The insole increased swing foot-ground clearance, with.43 cm for the older adults' dominant foot. The insole also prevented excessive lateral centre of pressure movement. The main insole effects on foot contact mechanics were (i) prolonged time to foot-flat (.015 s) and (ii) improved energy efficiency (2%). Reduced knee adduction moment (>15%) was observed in the older group. Shoe insoles to provide dorsiflexion and eversion support may have the potential to reduce the risk of falls and locomotion-related injuries for older adults.

Practitioner Summary: Using 3 D gait assessment techniques this research investigated shoe-insoles incorporating ankle dorsiflexion and eversion support features. It was shown that falls risk and locomotive injuries could be reduced by the application of orthotics to support ankle dorsiflexion and eversion. Shoe-orthotics may provide practical low-cost solutions to correcting gait impairments.

Abbreviations: MFC: minimum foot clearance; CoP: centre of pressure; OA: osteoarthritis; GRF: ground reaction forces; IREDS: infra-red light emitting diodes; PE: potential energy; KE: kinetic energy; IQR: interquartile range; ANOVA: analysis of variance

Acknowledgments

The authors appreciate the contribution of Tony Sparrow in preparing the manuscript for publication.

Disclosure statement

Patent application was filed (WO2016015091A1) after the current research was completed in 2014 including the national phase in China, Europe and Japan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.