39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effects of exoskeleton use on human response to simulated overhead tasks with vibration

, , &
Received 27 Feb 2024, Accepted 18 Jun 2024, Published online: 04 Jul 2024
 

Abstract

The use of occupational exoskeletons has grown fast in manufacturing industries in recent years. One major scenario of exoskeleton use in manufacturing is to assist overhead, power hand tool operations. This preliminary work aimed to determine the effects of arm-supporting exoskeletons on shoulder muscle activity and human-hand tool coupling in simulated overhead tasks with axially applied vibration. An electromagnetic shaker capable of producing the random vibration spectrum specified in ISO 10819 was hung overhead to deliver vibrations. Two passive, arm-supporting exoskeletons, with one (ExoVest) transferring load to both the shoulder and pelvic region while the second one (ExoStrap) transferring load primarily to the pelvic region, were used in testing. Testing was also done with the shaker placed in front of the body to better understand the posture and exoskeleton engagement effects. The results collected from 6 healthy male subjects demonstrate the dominating effects of the overhead working posture on increased shoulder muscle activities. Vibration led to higher muscle activities in both agonist and antagonist shoulder muscles to a less extent. Exoskeleton use reduced the anterior deltoid and serratus anterior activities by 27% to 43%. However, wearing the ExoStrap increased the upper trapezius activities by 23% to 38% in the overhead posture. Furthermore, an increased human-shaker handle coupling was observed in the OH posture when wearing the ExoVest, indicating a more demanding neuromuscular control.

PRACTITIONER SUMMARY

The current work sought to understand exoskeleton use in overhead tasks with power hand tools. The study findings demonstrate that vibration didn’t alter the effects of arm-supporting exoskeletons on shoulder muscle activities in overhead tasks with vibration, though exoskeleton use may complicate human-hand tool coupling and corresponding neuromuscular control.

Authors’ contributions

Ting Xia: Conceptualisation, Methodology, Data collection, Data processing, Data analysis, Writing – original draft, Writing – review & editing, Supervision, Funding acquisition. Parisa Torkinejad-Ziarati: Data collection, Data processing. Simon Kudernatsch: Methodology, Writing – review & editing. Donald R. Peterson: Conceptualisation, Writing – review & editing.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Funding

This work was supported by the Great Journeys Graduate Assistantship, Northern Illinois University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.