173
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of ethanol content and temperature in coagulation bath on the microstructure and performance of polyvinylidene fluoride ultrafiltration membranes

, , , , &
Pages 73-87 | Received 19 Aug 2021, Accepted 20 Feb 2022, Published online: 29 Aug 2022
 

Abstract

In this article, polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via phase inversion method. The influence of different ethanol content and temperature in coagulation bath on the microstructure of PVDF membranes was discussed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) measurements. Rejection experiment was conducted with the bovine serum albumin (BSA) solution. The FTIR and XRD analysis showed the higher ethanol content and temperature of coagulation bath promoted the α crystal form of PVDF membranes. The increase of ethanol content in coagulation bath led to a decrease in the mean pore size and porosity and the increase of BSA rejection rate and break strength of PVDF membranes. This was because of the increase of ethanol content in coagulation bath that resulted in the formation of the more sponge-like structures and the fewer finger-like structures, which enhanced the compactness of the membranes. The PVDF membrane prepared in ethanol/pure water (60/40) coagulation bath at 20 °C showed a greater BSA rejection rate of 91.87% and break strength of 1.89 MPa with a mean pore size of 29.26 nm. Meanwhile, the increase in temperature of coagulation bath had a positive effect on the mean pore size, porosity, and hydrophilicity of PVDF membranes to a certain extent.

Additional information

Funding

This work was supported by the Scientific Research Project of Shaanxi province of China [Grant No. 2021GY-147], the Scientific Research Project of Shaanxi Education Department, China [Grant No. 19JC017], and the Xi’an Municipal Science and Technology Project, China [Grant No. 2020KJRC0025].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,630.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.