5
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Palsarnas periodiska avsmältning i Finska Lappland

Pages 39-44 | Published online: 10 Apr 2013
 

Abstract

Seppälä, Matti: Palsarnas periodiska avsmältning i Finska Lappland.

Geografisk Tidsskrift 82: 39–44. København, 1982

Seasonal thawing of paisas in Finnish Lapland. The study investigates the thicknesses of the active layer and the temporal local and regional differences in thawing of paisas in northernmost Finland. The study cover 17 palsabogs. Thermal gradients are measured, and the effect of surface cracks and vegetation is discussed.

RESUMÉ

Undersøgelsen belyser tykkelsen af det aktive lag samt temporære lokale og regionale forskelle i optøningen af palser i Nordfinland. Observationerne er foretaget 1972–1982. Ialt foreligger 183 målinger fra 17 palsmoser, alle fra palstoppene.

Optøningsmønstret i forskellige dele af samme pals er tidligere studeret ved Nunnanen (1974) og Utsjoki (1975–1977). Optoningen begynder typisk i maj i palsens top, da denne som det ferste område frilægges for sne. I juni og juli fortsætter optøningen overalt på palsen. Sydsiden karakteriseres ved hastigere optøning end nordsiden, østsiden optør til omirent samme dybde som palstoppen, mens vestskråningen karakteriseres ved laveste optøningshastighed. Generelt er optøningshastigheden størst i skråninger, ved hvis fod der står vand.

Det isolerende tørvelags mindste masgtighed på finske palser synes at være ca. 50 cm. Er tørvelaget tyndere, eksisterer palser ikke eller er under smeltning.

Regionale forskelligheder i optøning er ikke påvist. Forskelle de enkelte palser imellem er større end forskelle mellem palsmoserne. Inden for samme palsmose gaslder det generelt, at lave palser smelter mindre end høje palser. Den normale optøningsdybde pr. år er 55–70 cm. Dette svarer til aktivlagets maximale mægtighed på toppen af de fleste palser i Finsk Lapland. Den maximale optøningsdybde nås sædvanligvis i begyndelsen af oktober.

Den største forskel i frostniveauets beliggenhed optræder i juli. I august er forskellene reduceret til få cm. Hvis optøningen når dybere end 70 cm, hvilket kan være tilfældet i nogle vinderoderede palser, når det vinterfrosne overfladelag i nogle tilfælde ikke ned til oversiden af den underliggende permafrost. I så fald eksisterer et optøet supra-permafrostlag, der kan ødelaegge den frosne kerne i palser. I meget varmt vejr er det i nogle tilfælde observeret, at 0°C-isotermen blev forskudt opad. Dette forhold kan forklares som et resultat af stærk fordampning, hvorved underliggende tørvelag afkøles.

Temperaturgradienter måltes ligeledes i forskellige dele af palser. Høje dagtemperaturer bevirker, at en frossen kerne med asymmetrisk omrids bliver klart mere symmetrisk. Regn forøger smeltningen, idet den termale ledningsevne for våd tørv er væsentlig større end den termale ledningsevne for tør tørv. Jo mere tør en sommer er, jo bedre muligheder har palser for at overleve.

Overfladerevner i palser synes ikke at have stor effekt på optøningsdybden. Deres største effekt ligger derimod i det forhøld, at de foreger muligheden for at tørveblokke skrider ned fra en pals sider, hvorved palsens indre udsasttes for smeltning.

Bevoksning på palsoverfladen mindsker optoningsdybden. De bevoksede toppe på forskellige palser har vist sig at være de mest hensigtsmaessige steder for sammenligning af optøningsmålinger de enkelte palser imellem.

This study investigates the thicknesses of the active layer and the temporal local and regional differences in thawing of palsas in northernmostFinland. Observations were made between 1972–82. Altogether 183 measurements were made on 17 palsabogs on the top of palsas.

The pattern of thawing in different parts of the same paisa was studied at Nunnanen (1974) and at Utsjoki (1975–77). Several measurements in several points were made at intervals during the thawing season. Typically, thawing starts in May from the top of the paisa since this is the first to be uncovered by snow. In June and July thawing continues with the southern slope thawing faster than the northern one. The east side thaws almost as deeply as the top while the western slope thaws least. Those slopes which are wet because of standing water at the foot of the paisa melt quicker than elsewhere.

The minimum thickness of the insolating peat layer on palsas in Finland appears to be about 50 em. If the peat layer is thinner palsas do not exist or they melt out.

Regional differences in the rate and amount of thawing is not found. The differences between the various palsas was greater than the differences between paisa bogs. In general, in the same paisabog, low palsas melt less than higher ones. The normal thawing depth per year is 55–70 em. This is the maximum thickness of the active layer on the top of most palsas in Finnish Lapland and is usually reached by the beginning of October.

The greatest range in the position of the frost table occurs in July. These differences were reduced by August when the differences were just a few centimetres. If thawing continues deeper than 70 em, as happens in some wind eroded palsas, then frost may fail to penetrate to the permafrost table. An unfrozen supra-permafrost layer then exists which may eventually distroy the frozen core of paisa. In some cases during very hot weather it was observed that the frost table moved upwards. This may be explained by strong evaportion which cools the lower wet layers.

Thermal gradients in different parts of a paisa were also measured. High day temperatures cause the asymmetrical shape of the core surface to become substantially more regular. Rain increases melting because the thermal conductivity of wet peat is much higher than of dry peat. The dryer the summer the better the paisa survives.

Cracks on the paisa surface do not appear to have a great effect on the depth of thawing. Instead, they increase the possibility of slumping of peat blocks and then the paisa looses its insolation peaty cover and thermokarst is activated.

Vegetation on the paisa surface decreases thawing. The vegetated summits of different palsas are the best localities for the comparison of thawing measurements.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.