67
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

The mineralogy and chemical composition of the Woodlawn massive sulphide orebody

Pages 155-168 | Published online: 01 Aug 2007
 

Abstract

The main Woodlawn ore lens is a polymetallic, massive sulphide deposit’ with pyrite the major constituent, variable sphalerite, galena and chalcopyrite, and minor arsenopyrite, tetrahedrite‐tennantite, pyrrhotite and electrum. The silicate gangue minerals are chlorite, quartz, talc and sericitic mica. Other mineralization in the vicinity consists of footwall copper ore in chlorite schist and several smaller massive sulphide lenses. The predominant country rocks are felsic volcanics and shales, with abundant quartz, chlorite and mica, and talc in mineralized zones.

An important textural feature of the massive ore is the fine compositional banding. Bands, which vary in thickness from a few tens of micrometres to several millimetres, are produced by variations in the sulphide content. Post‐depositional metomorphism and minor fracturing have only slightly modified this banding.

Apart from the major element constituents—Pb, Zn, Fe, Cu and S—the ore is characterized by significant (100–1000 ppm) values for Ag, As, Cd, Mn, Sb and Sn, and lower (1–100 ppm) values of Au, Bi, Co, Ga, Hg, Mo, Ni, Tl. In and Ge. Variations in the base‐metal sulphide content, the gangue mineralogy, and trace elements, are used to separate the orebody into hanging‐wall and footwall zones. The hanging‐wall zone shows a more variable trace element content, with higher Tl, Sn, Ni, Mn, Ge and Sb, but lower Ag, Cd, and Mo, than the footwall zone.

In general style of mineralization, mineralogy, and chemistry, the Woodlawn deposit resembles other volcanogenic massive sulphide deposits in eastern Australia, in New Brunswick in Canada, and the Kuroko deposits of Japan.

Notes

Present address: Exxon Production Research Company, P.O. Box 2189, Houston, Texas 77001, U.S.A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.