1,352
Views
144
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the medicinal use of clay minerals as antibacterial agents

&
Pages 745-770 | Accepted 18 Jan 2010, Published online: 24 Mar 2010
 

Abstract

Natural clays have been used to heal skin infections since the earliest recorded history. Recently, our attention was drawn to a clinical use of French green clay (rich in Fe‐smectite) for healing Buruli ulcer, a necrotizing fasciitis (‘flesh-eating’ infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources.

Microbiological testing of two French green clays and other clays used traditionally for healing identified three samples that were effective at killing a broad spectrum of human pathogens. A clear distinction must be made between ‘healing clays’ and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s).

The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g. an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation.

Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure (∼900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g. microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox-related reactions occurring at the bacterial cell wall.

Acknowledgements

We thank Catherine Skinner, who invited our contribution to this special issue. This article benefited greatly from careful reviews by Paul Schroeder, John Smoglia, and Catherine Skinner. This work would not have been possible without collaborative efforts on the part of all researchers involved. Funding was made possible by the NIH-National Center for Complementary and Alternative Medicine (grant AT0003618 to LBW). We also thank Line and Thierry Brunet de Courssou, who provided the antibacterial clays to LBW; students and assistants, including Amanda Turner, Christine Remenih, and Tanya Borchardt; and the Center for Solid State Science and School of Life Sciences for technical support, in particular Lawrence Garvie and Dave Lowry who assisted with electron microscopy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 290.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.