251
Views
7
CrossRef citations to date
0
Altmetric
Articles

Crystallogenetic models for metasomatic replacement in zircons: implications for U–Pb geochronology of Precambrian rocks

, &
Pages 1526-1542 | Received 13 Feb 2014, Accepted 02 Sep 2014, Published online: 08 Oct 2014
 

Abstract

Recrystallization of zircons under the influence of fluids was studied using examples from Precambrian rocks (microcline granites, metasedimentary, and mafic rocks) of the Kola Peninsula. All zircon crystals showed complex internal textures visible by cathodoluminescence and backscattered electron (BSE) imaging. Detailed mineralogical and geochemical studies with subsequent secondary ion mass spectrometer U–Pb dating of different zircon domains show that secondary texture formation can be interpreted in terms of metasomatic replacement of zircon crystals on the base of crystallogenetic experimental models. Mechanisms of zircon replacement and interpretation of U–Pb ages for secondary zircon domains are dependent on the degree of damage of the zircon structure and the fluid composition. The recrystallization of metamict zircon without additional supply of new zircon substance (Zr, SiO2) goes with the dissolution of amorphous domains and precipitation of new polycrystalline zircon, which preserves the U–Pb initial age, but loses radiogenic lead, and the lower intercept of Discordia lines with the Concordia curve determines the time of fluid influence. The recrystallization of metamict zircon or crystalline zircon with high contents of impurities with additional supply of Si and Zr forms monocrystalline replacements. Dissolution of primary zircon is accompanied by growth of new zircon domains differing in the composition of isomorphic impurities and zones of transitional composition, whose ages have no geological sense. The study is of particular importance for zircons from Precambrian rocks with long and complex histories.

Acknowledgments

The authors are thankful to Dr S.P. Verma and Dr F. Corfu for constructive review and help with the manuscript, and the anonymous reviewer for his critical comments.

Additional information

Funding

This study was supported by the Russian Foundation for Basic Research, projects no. 14-05–00443 and 13-05-12053 ofi-m.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 290.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.