221
Views
6
CrossRef citations to date
0
Altmetric
Section B

A fast numerical algorithm for solving nearly penta-diagonal linear systems

, &
Pages 851-860 | Received 14 Oct 2011, Accepted 04 Feb 2012, Published online: 13 Mar 2012
 

Abstract

In this paper, we present a fast numerical algorithm for solving nearly penta-diagonal linear systems and show that the computational cost is less than those of three algorithms in El-Mikkawy and Rahmo, [Symbolic algorithm for inverting cyclic penta-diagonal matrices recursively–Derivation and implementation, Comput. Math. Appl. 59 (2010), pp. 1386–1396], Lv and Le [A note on solving nearly penta-diagonal linear systems, Appl. Math. Comput. 204 (2008), pp. 707–712] and Neossi Nguetchue and Abelman [A computational algorithm for solving nearly penta-diagonal linear systems, Appl. Math. Comput. 203 (2008), pp. 629–634.]. In addition, an efficient way of evaluating the determinant of a nearly penta-diagonal matrix is also discussed. The algorithm is suited for implementation using computer algebra systems (CAS) such as MATLAB, MACSYMA and MAPLE. Some numerical examples are given in order to illustrate the efficiency of our algorithm.

2010 AMS Subject Classification :

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) under grant 11071192 and the International Science and Technology Cooperation Program of China under grant 2010DFA14700. The authors would like to thank the referees who substantially enhanced the quality of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.