150
Views
9
CrossRef citations to date
0
Altmetric
Section B

Study of the dynamics of third-order iterative methods on quadratic polynomials

, &
Pages 1826-1836 | Received 15 Sep 2011, Accepted 03 Apr 2012, Published online: 16 May 2012
 

Abstract

In this paper, we analyse the dynamical behaviour of the operators associated with multi-point interpolation iterative methods and frozen derivative methods, for solving nonlinear equations, applied on second-degree complex polynomials. We obtain that, in both cases, the Julia set is connected and separates the basins of attraction of the roots of the polynomial. Moreover, the Julia set of the operator associated with multi-point interpolation methods is the same as the Newton operator, although it is more complicated for the frozen derivative operator. We explain these differences by obtaining the conjugacy function of each method and by showing that the operators associated with Newton's method and multi-point interpolation methods are both conjugate to powers of z.

2010 AMS Subject Classifications:

Acknowledgements

The authors thank Professors X. Jarque and A. Garijo for their help. The authors also thank the referees for their valuable comments and suggestions that have improved the content of this paper. This research was supported by Ministerio de Ciencia y Tecnología MTM2011-28636-C02-02 and by Vicerrectorado de Invetigación, Universitat Politècnica de València, PAID-06-2010-2285

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.