243
Views
10
CrossRef citations to date
0
Altmetric
Section B

A collocation approach to solve the Riccati-type differential equation systems

Pages 2180-2197 | Received 15 Mar 2011, Accepted 12 Jun 2012, Published online: 13 Jul 2012
 

Abstract

In this paper, a collocation method is presented for the solutions of the system of the Riccati-type differential equations with variable coefficients. The proposed approach consists of reducing the problem to a nonlinear algebraic equation system by expanding the approximate solutions in terms of the Bessel polynomials with unknown coefficients. The unknown coefficients of the Bessel polynomials are found by using the matrix operations of derivatives together with the collocation method. The proposed method gives the analytic solutions when the exact solutions are polynomials. Also, an error analysis technique based on the residual function is introduced for the suggested method. The reliability and efficiency of the proposed scheme are demonstrated by some numerical examples. Comparing the methodology with some known techniques shows that the presented approach is relatively easy and highly accurate. All of the numerical calculations have been done by using a program written in Maple.

2010 AMS Subject Classifications:

Acknowledgements

The author thanks the editor and the referees for carefully reading the paper and for their many constructive comments and suggestions to improve the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.