124
Views
2
CrossRef citations to date
0
Altmetric
Section B

High-order mixed weighted compact and non-compact scheme for shock and small length scale interaction

, &
Pages 376-407 | Received 09 May 2012, Accepted 30 Jul 2012, Published online: 10 Sep 2012
 

Abstract

It is critical for a numerical scheme to obtain numerical results as accurate as possible with limited computational resources. Turbulent processes are very sensitive to numerical dissipation, which may dissipate the small length scales. On the other hand, dealing with shock waves, capturing and reproducing of the discontinuity may lead to non-physical oscillations for non-dissipative high-order schemes. In the present work, a new high-order mixed weighted compact and non-compact difference scheme (MWCS hereafter) is proposed for accurate approximation of the derivatives in the governing Euler equations. The basic idea is to recover the non-dissipative high-order weighted compact scheme (WCS) in smooth regions, while linearly combine the WCS with a non-compact scheme, the weighted essentially non-oscillatory (WENO) scheme, for near-shock areas, by using a shock-detecting function. The proposed formulation does not involve any case-dependent adjustable parameter. A detailed Fourier and local truncation error analysis are used for assessing the dispersion and dissipation characteristics of the scheme. Numerical tests are performed for the one- and two-dimensional case and the results are compared with the well-established WENO scheme and the WCS.

2010 AMS Subject Classifications:

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.