210
Views
19
CrossRef citations to date
0
Altmetric
Section A

Availability of a repairable retrial system with warm standby components

, , &
Pages 2279-2297 | Received 13 Jul 2010, Accepted 05 Mar 2013, Published online: 14 May 2013
 

Abstract

In this paper, we study a repairable K-out-of-(M+W) retrial system with M identical primary components, W standby components and one repair facility. The time-to-failure and time-to-repair of the primary and standby components are assumed to be exponential and general distributions, respectively. The failed components are immediately for repair if the server is idle, otherwise the failed machines would enter an orbit. It is assumed that the retrial times are exponentially distributed. We present a recursive method using the supplementary variable technique and treating the supplementary variable as the remaining repair time to obtain the steady-state probabilities of down components at arbitrary epoch. Then, a unified and efficient algorithm is developed to compute the steady-state availability. The method is illustrated analytically for the exponential repair time distribution. Sensitivity analysis of the steady-state availability with respect to system parameters for a variety of repair time distributions is also investigated.

2000 AMS Subject Classifications:

Acknowledgements

The authors would like to thank anonymous referees for their helpful comments and suggestions which led to improvements in this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.