122
Views
1
CrossRef citations to date
0
Altmetric
Section B

High-accuracy quadrature methods for solving boundary integral equations of steady-state anisotropic heat conduction problems with Dirichlet conditions

&
Pages 1097-1121 | Received 09 Oct 2012, Accepted 18 Jul 2013, Published online: 09 Sep 2013
 

Abstract

This paper presents the mechanical quadrature methods (MQMs) for solving the boundary integral equations of steady-state anisotropic heat conduction equation on the smooth domains and polygons, respectively. The costless and high-accurate Sidi–Israeli quadrature formula are applied to deal with the integrals in which the kernels have a logarithmic singularity. Especially, the Sidi transformation is used for the polygon cases in order to obtain a rapid convergence by degrading the singularity at the corners on the boundary. The convergence and stability of the MQMs solution are proved based on Anselone's collective compact theory. In addition, asymptotic error expansion of the MQMs shows that the approximation order is of O(h3), where h is the partition size of the boundary. Finally, numerical examples are tested and results verify the theoretical analysis.

2000 AMS Subject Classifications:

Acknowledgements

The work was supported by the National Natural Science Foundation of China (10871034).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.