128
Views
3
CrossRef citations to date
0
Altmetric
SECTION B

Sensitivity analysis and variance reduction in a stochastic non-destructive testing problem

&
Pages 1874-1882 | Received 27 Aug 2013, Accepted 28 Jan 2014, Published online: 02 Jun 2014
 

Abstract

In this paper, we present a framework to deal with uncertainty quantification in case where the ranges of variability of the random parameters are ill-known. Namely the physical properties of the corrosion product (magnetite) which frequently clogs the tube support plate of steam generator, which is inaccessible in nuclear power plants. The methodology is based on polynomial chaos (PC) for the direct approach and on Bayesian inference for the inverse approach. The direct non-intrusive spectral projection (NISP) method is first employed by considering prior probability densities and therefore constructing a PC surrogate model of the large-scale non-destructive testing finite element model. To face the prohibitive computational cost underlying the high-dimensional random space, an adaptive sparse grid technique is applied on NISP resulting in drastic time reduction. The PC surrogate model, with reduced dimensionality, is used as a forward model in the Bayesian procedure. The posterior probability densities are then identified by inferring from few noisy experimental data. We demonstrate effectiveness of the approach by identifying the most influential parameter in the clogging detection as well as a variability range reduction.

(2010) AMS Subject Classifications:

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.