516
Views
89
CrossRef citations to date
0
Altmetric
Articles

DCapBAC: embedding authorization logic into smart things through ECC optimizations

, , &
Pages 345-366 | Received 31 Dec 2013, Accepted 09 Apr 2014, Published online: 22 May 2014
 

Abstract

In recent years, the increasing development of wireless communication technologies and IPv6 is enabling a seamless integration of smart objects into the Internet infrastructure. This extension of technology to common environments demands greater security restrictions, since any unexpected information leakage or illegitimate access to data could present a high impact in our lives. Additionally, the application of standard security and access control mechanisms to these emerging ecosystems has to face new challenges due to the inherent nature and constraints of devices and networks which make up this novel landscape. While these challenges have been usually addressed by centralized approaches, in this work we present a set of Elliptic Curve Cryptography optimizations for point and field arithmetic which are used in the design and implementation of a security and capability-based access control mechanism (DCapBAC) on smart objects. Our integral solution is based on a lightweight and flexible design that allows this functionality is embedded on resource-constrained devices, providing the advantages of a distributed security approach for Internet of Things (IoT) in terms of scalability, interoperability and end-to-end security. Additionally, our scheme has been successfully validated by using AVISPA tool and implemented on a real scenario over the Jennic/NXP JN5148 chipset based on a 32-bit RISC CPU. The results demonstrate the feasibility of our work and show DCapBAC as a promising approach to be considered as security solution for IoT scenarios.

2010 AMS Subject Classifications:

Acknowledgements

This work has been sponsored by European Commission through the FP7-SMARTIE-609062 and FP7-SOCIOTAL-609112 EU Projects, and the Spanish Seneca Foundation by means of the Excellence Researching Group Program (04552/GERM/06) and the FPI program (grant 15493/FPI/10).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.