148
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A three-dimensional model of primary thrombus formation based on fluid dynamics and level sets

&
Pages 962-980 | Received 05 Mar 2015, Accepted 30 Dec 2015, Published online: 25 Mar 2016
 

ABSTRACT

In this paper, a three-dimensional (3D) multiscale model is proposed for the formation process of a primary thrombus. In the model, blood plasma is modelled by Navier–Stokes equations in macroscale because the blood plasma is seen as a continuous viscous fluid. The adhesion and aggregation of platelets are the main physiological processes of primary thrombus formation. As platelets and the primary thrombus are seen as rigid solids, these physiological processes are modelled in microscale according to the force related to the distance between the two solid bodies. We use level sets to represent the growth of the primary thrombus in 3D, and the multiscale model is applied to the 3D simulation of the primary thrombus formation. From numerical observations, the appearance of the formation process shows that it was affected by the change of blood-flow velocities. We can conclude that the appearance of the primary thrombus affects vascular blood flow.

2010 AMS SUBJECT CLASSIFICATIONS:

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.