305
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Residue-to-binary conversion for general moduli sets based on approximate Chinese remainder theorem

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1833-1849 | Received 16 Jun 2015, Accepted 01 Aug 2016, Published online: 28 Nov 2016
 

ABSTRACT

The residue number system (RNS) is an unconventional number system which can lead to parallel and fault-tolerant arithmetic operations. However, the complexity of residue-to-binary conversion for large number of moduli reduces the overall RNS performance, and makes it inefficient for nowadays high-performance computation systems. In this paper, we present an improved approximate Chinese remainder theorem (CRT) with the aim of performing efficient residue-to-binary conversion for general RNS moduli sets. To achieve this aim, the required number of fraction bits for accurate residue-to-binary conversion is derived. Besides, a method is proposed to substitute fractional calculations by similar computations based on integer numbers to have a hardware amenable algorithm. The proposed approach results in high-speed and low-area residue-to-binary converters for general RNS moduli sets. Therefore, with this conversion method, high dynamic range residue number systems suitable for cryptography and digital signal processing can be designed.

2010 AMS SUBJECT CLASSIFICATIONS:

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.