134
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A splitting compact finite difference method for computing the dynamics of dipolar Bose–Einstein condensate

Pages 2027-2040 | Received 04 Aug 2016, Accepted 24 Sep 2016, Published online: 19 Jan 2017
 

ABSTRACT

We numerically study the nonlocal Gross–Pitaevskii equation (NGPE) which describes the dynamics of Bose–Einstein condensates (BEC) with dipole–dipole interaction at extremely low temperature. In preparation for the numerics, first we reformulate the dimensionless NGPE into a Schrödinger–Poisson system. Then, we discretize the three-dimensional Schrödinger–Poisson system in space by a sixth-order compact finite difference method and in time by a splitting technique. By means of three-dimensional discrete fast Sine transform, we develop a fast solver for the resulting discretized system. Finally, we present numerical examples in three dimensions to demonstrate the power of the numerical methods and to discuss some physics of dipolar BEC. The merits of the proposed method for the NGPE are that it is fast and unconditionally stable. Moreover, the method is of spectral-like accuracy in space, and conserves the particle number and the energy of the system in the discretized level.

CLASSIFICATION:

Disclosure statement

No potential conflict of interest was reported by the author.

Additional information

Funding

The research of H. Wang is supported in part by the National Natural Science Foundation of China [grant number 11261065 and 91430103].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.