281
Views
18
CrossRef citations to date
0
Altmetric
Original Article

On the numerical solution of Fredholm integral equations utilizing the local radial basis function method

ORCID Icon, & ORCID Icon
Pages 1416-1443 | Received 09 Feb 2018, Accepted 08 Jul 2018, Published online: 12 Aug 2018
 

ABSTRACT

The current investigation describes a computational technique to solve one- and two-dimensional Fredholm integral equations of the second kind. The method estimates the solution using the discrete collocation method by combining locally supported radial basis functions (RBFs) constructed on a small set of nodes instead of all points over the analysed domain. In this work, we employ the Gauss–Legendre integration rule on the influence domains of shape functions to approximate the local integrals appearing in the method. In comparison with the globally supported RBFs for solving integral equations, the proposed method is stable and uses much less computer memory. The scheme does not require any cell structures, so it is meshless. We also obtain the error analysis of the proposed method and demonstrate that the convergence rate of the approach is high. Illustrative examples clearly show the reliability and efficiency of the new method.

2010 MSC SUBJECT CLASSIFICATIONS:

Acknowledgments

The authors are very grateful to three reviewers and the associate editor for their valuable comments and suggestions which have improved the paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.