33
Views
2
CrossRef citations to date
0
Altmetric
Miscellany

Aspects of neural modeling of multidimensional chaotic attractors

, , &
Pages 791-802 | Accepted 19 Dec 2003, Published online: 25 Jan 2007
 

Abstract

This article discusses various aspects of neural modeling of multidimensional chaotic attractors. The Lorenz and Rosler attractors are considered as representative cases and are thoroughly examined. These two dynamical systems are expressed, within acceptable accuracy limits, by the corresponding systems of difference equations. Initially, the complete neural models of the attractors are examined. In this case, the neural networks are supplied with the values Xn , Yn , Zn of the systems to predict all the next components (Xn +1, Yn +1, and Zn +1) of the attractors. In the second case, named ‘component simulation’, the neural models are trained to predict only one of the values Xn , Yn , Zn , when they are fed with the complete input vector as in the first case. In the third case, the proposed neural networks are trained to predict only one component (Xn +1, Yn +1, or Zn +1) of the attractors, given a number of past values of the same component. Finally, the ability of the networks to predict the Y and Z components of an X time series of the dynamical systems is examined. Since the response of some networks is not satisfactory, the distribution of absolute error is considered in order to form a realistic picture of the networks’ performance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.