161
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Numerical methods for nonlinear fourth-order boundary value problems with applications

&
Pages 83-104 | Received 06 Feb 2006, Accepted 22 Mar 2007, Published online: 31 Dec 2007
 

Abstract

In this paper, we present efficient numerical algorithms for the approximate solution of nonlinear fourth-order boundary value problems. The first algorithm deals with the sinc–Galerkin method (SGM). The sinc basis functions prove to handle well singularities in the problem. The resulting SGM discrete system is carefully developed. The second method, the Adomian decomposition method (ADM), gives the solution in the form of a series solution. A modified form of the ADM based on the use of the Laplace transform is also presented. We refer to this method as the Laplace Adomian decomposition technique (LADT). The proposed LADT can make the Adomian series solution convergent in the Laplace domain, when the ADM series solution diverges in the space domain. A number of examples are considered to investigate the reliability and efficiency of each method. Numerical results show that the sinc–Galerkin method is more reliable and more accurate.

Additional information

Notes on contributors

Mohamed Ali Hajji

Email: [email protected]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.