354
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Approximations of 2D and 3D generalized Voronoi diagrams

, , &
Pages 1003-1022 | Received 26 Sep 2006, Accepted 03 May 2007, Published online: 04 Mar 2011
 

Abstract

We propose a new approach for computing in an efficient way polygonal approximations of generalized 2D/3D Voronoi diagrams. The method supports distinct site shapes (points, line-segments, curved-arc segments, polygons, spheres, lines, polyhedra, etc.), different distance functions (Euclidean distance, convex distance functions, etc.) and is restricted to diagrams with connected Voronoi regions. The presented approach constructs a tree (a quadtree in 2D/an octree in 3D) which encodes in its nodes and in a compact way all the information required for generating an explicit representation of the boundaries of the Voronoi diagram approximation. Then, by using this hierarchical data structure a reconstruction strategy creates the diagram approximation. We also present the algorithms required for dynamically maintaining under the insertion or deletion of sites the Voronoi diagram approximation. The main features of our approach are its generality, efficiency, robustness and easy implementation.

2000 AMS Subject Classification: :

Acknowledgements

This work was partially supported by project MEC TIN2004-08065-C02-02.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.