36
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A message combining approach for efficient array redistribution in non-all-to-all communication networks

&
Pages 1609-1619 | Received 03 Oct 2006, Accepted 21 Jun 2007, Published online: 08 Oct 2008
 

Abstract

The Array redistribution problem is the heart of a number of applications in parallel computing. This paper presents a message combining approach for scheduling runtime array redistribution of one-dimensional arrays. The important contribution of the proposed scheme is that it eliminates the need for local data reorganization, as noted by Sundar in 2001; the blocks destined for each processor are combined in a series of messages exchanged between neighbouring nodes, so that the receiving processors do not need to reorganize the incoming data blocks before storing them to memory locations. Local data reorganization is of great importance, especially in networks where there is no direct communication between all nodes (like tori, meshes, and trees). Thus, a block must travel through a number of relays before reaching the target processor. This requires a higher number of messages generated, therefore, a higher number of data permutations within the memory of each target processor should be made to assure correct data order. The strategy is based on a relation between groups of communicating processor pairs called superclasses.

2000 AMS Subject Classification:

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.