172
Views
11
CrossRef citations to date
0
Altmetric
Section A

Listing all the minimum spanning trees in an undirected graph

, &
Pages 3175-3185 | Received 05 Dec 2008, Accepted 06 Sep 2009, Published online: 19 Nov 2010
 

Abstract

Efficient polynomial time algorithms are well known for the minimum spanning tree problem. However, given an undirected graph with integer edge weights, minimum spanning trees may not be unique. In this article, we present an algorithm that lists all the minimum spanning trees included in the graph. The computational complexity of the algorithm is O(N(mn+n 2 log n)) in time and O(m) in space, where n, m and N stand for the number of nodes, edges and minimum spanning trees, respectively. Next, we explore some properties of cut-sets, and based on these we construct an improved algorithm, which runs in O(N m log n) time and O(m) space. These algorithms are implemented in C language, and some numerical experiments are conducted for planar as well as complete graphs with random edge weights.

2000 AMS Classifications :

Acknowledgements

The authors are grateful to two anonymous referees and and a Editor for their constructive criticisms and suggestions. Numerous comments from Professor Kazuo Ouchi were substantial in improving the quality of English in this paper, for which we express deep appreciation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.