84
Views
8
CrossRef citations to date
0
Altmetric
Section B

Optimal control of switched autonomous systems in microbial fed-batch cultures

&
Pages 396-407 | Received 23 Apr 2009, Accepted 25 Oct 2009, Published online: 26 Nov 2010
 

Abstract

A switched autonomous system is proposed to formulate the fed-batch culture process by taking the switching instants between the feed and batch processes as control variables. To maximize the concentration of 1,3-propanediol (1,3-PD) at the terminal time, an optimal control model subject to our proposed switched autonomous system and continuous state inequality constraints is then presented. A computational approach is developed to find the optimal switching instants in two aspects. On the one hand, the constraint transcription and smoothing techniques are applied to dealing with the continuous state inequality constraints; on the other hand, the first and the second derivatives of the cost functional, where the transformed state constraints are treated as a penalty function, are derived by the calculus of variations. Numerical results show that, by employing the optimal switching instants, the concentration of 1,3-PD at the terminal time can be increased considerably.

2000 AMS Subject Classifications :

Acknowledgements

This work is supported by the National Natural Science Foundation (Nos. 10471014, 10871033 and 70772026).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.