341
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

An integrated collision avoidance system for autonomous underwater vehicles

, &
Pages 1027-1049 | Received 11 Sep 2006, Accepted 19 Jan 2007, Published online: 22 Dec 2008
 

Abstract

This paper presents an integrated approach to the design of an obstacle avoidance system for autonomous underwater vehicles. A type of incremental stochastic algorithm known as rapidly-exploring random tree (RRT) is merged with a manoeuvre automaton (MA) representation to form the motion planner. The improved planner is not only capable of taking into account the dynamics of the system, but it also allows complex non-linear manoeuvres to be performed. In addition, it is highly computationally efficient. This paper also extends it to take into account dynamic targets. The output trajectory from the planner is then tracked using a kinematic based state-dependent Riccati equation (SDRE) controller. In other words, by omitting the requirement of a dynamic model of the system, one can extend the application to a more encompassing types of vehicle whilst reducing the number of tuning parameters. Detailed simulation studies are conducted using a non-linear AUTOSUB model to investigate the feasibility of the proposed methods.

Acknowledgement

The author would like to thank the IMarEST for the Stanley Gray Fellowship award and also Dr. Frazzoli of UCLA for his most enlightening explanation regarding the MA concept.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.