2,334
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Adaptive backstepping control of variable speed wind turbines

, &
Pages 910-919 | Received 27 Nov 2006, Accepted 16 Jun 2007, Published online: 10 Feb 2011
 

Abstract

Variable speed wind turbines maximize the energy capture by operating the turbine at the peak of the power coefficient, however parametric uncertainties in mechanical and electrical dynamics of the system may limit the efficiency of the turbine. In this study, we present an adaptive backstepping approach for the variable speed control of wind turbines. Specifically, to overcome the undesirable effects of parametric uncertainties, a desired compensation adaptation law (DCAL) based controller has been proposed. The proposed method achieves global asymptotic rotor speed tracking, despite the parametric uncertainty on both mechanical and electrical subsystems. Extensive simulation studies are presented to illustrate the feasibility and efficiency of the method proposed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.