2,339
Views
417
CrossRef citations to date
0
Altmetric
Original Articles

Distributed leaderless consensus algorithms for networked Euler–Lagrange systems

Pages 2137-2149 | Received 22 Aug 2008, Accepted 04 Apr 2009, Published online: 14 Sep 2009
 

Abstract

This article proposes and analyses distributed, leaderless, model-independent consensus algorithms for networked Euler–Lagrange systems. We propose a fundamental consensus algorithm, a consensus algorithm accounting for actuator saturation, and a consensus algorithm accounting for unavailability of measurements of generalised coordinate derivatives, for systems modelled by Euler–Lagrange equations. Due to the fact that the closed-loop interconnected Euler–Lagrange equations using these algorithms are non-autonomous, Matrosov's theorem is used for convergence analysis. It is shown that consensus is reached on the generalised coordinates and their derivatives of the networked Euler–Lagrange systems as long as the undirected communication topology is connected. Simulation results show the effectiveness of the proposed algorithms.

Acknowledgment

This work was supported by a National Science Foundation CAREER Award (ECCS-0748287).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.