533
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Consensus of networked multi-agent systems with communication delays based on the networked predictive control scheme

, &
Pages 851-867 | Received 28 Jul 2011, Accepted 18 Feb 2012, Published online: 19 Mar 2012
 

Abstract

The consensus problem of discrete-time networked multi-agent systems (NMASs) with a communication delay is investigated in this article, where the dynamics of agents described by discrete-time linear time-invariant systems can be either uniform or non-uniform. For the NMASs with a directed topology and constant delay, a novel protocol based on the networked predictive control scheme is proposed to compensate for communication delay actively. Using algebraic graph theories and matrix theories, necessary and/or sufficient conditions of achieving consensus are obtained, which indicates that, under the proposed protocol, the consensus is independent of the network delay and only dominated by agents' dynamics and communication topology. Meanwhile, the protocol design and consensus analysis are also presented in the case of no network delay. Simulation results are further presented to demonstrate the effectiveness of theoretical results.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61028010, 61021002). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.