335
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Stability, positive invariance and design of constrained regulators for networked control systems

, &
Pages 1401-1413 | Received 10 Mar 2011, Accepted 11 Apr 2012, Published online: 09 May 2012
 

Abstract

In this article, the stability analysis, the positive invariance of polyhedral sets and the design of state-feedback regulators for networked control systems (NCS) with bounded transmission delays, constant and unknown or time-varying, are investigated. The dynamics of the NCS is described by autoregressive-moving-average (ARMA) models. Contrary to former approaches based on quadratic Lyapunov functions, in this article polyhedral Lyapunov functions are used for both stability and positive invariance analysis and state-feedback synthesis. Then, based on the property that the exponential of a matrix can be expressed as a weighted sum of its constituent matrices, it is proven that the problems of determination of stability margins or the design of stabilising controllers can be reduced to linear programming optimisation problems. The use of ARMA models allows the development of methods for the design of state-feedback controllers satisfying state constraints or convergence rate specifications defined on the NCS state space and not on the state of an augmented state space representation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.