273
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Enforcing negative imaginary dynamics on mathematical system models

, , &
Pages 1292-1303 | Received 12 Oct 2012, Accepted 25 Apr 2013, Published online: 14 Jun 2013
 

Abstract

Flexible structures with collocated force actuators and position sensors lead to negative imaginary dynamics. However, in some cases, the mathematical models obtained for these systems, for example, using system identification methods may not yield a negative imaginary system. This paper provides two methods for enforcing negative imaginary dynamics on such mathematical models, given that it is known that the underlying dynamics ought to belong to this system class. The first method is based on a study of the spectral properties of Hamiltonian matrices. A test for checking the negativity of the imaginary part of a corresponding transfer function matrix is first developed. If an associated Hamiltonian matrix has pure imaginary axis eigenvalues, the mathematical model loses the negative imaginary property in some frequency bands. In such cases, a first-order perturbation method is proposed for iteratively collapsing the frequency bands whose negative imaginary property is violated and finally displacing the eigenvalues of the Hamiltonian matrix away from the imaginary axis, thus restoring the negative imaginary dynamics. In the second method, direct spectral properties of the imaginary part of a transfer function are used to identify the frequency bands where the negative imaginary properties are violated. A pointwise-in-frequency scheme is then proposed to restore the negative imaginary system properties in the mathematical model.

Acknowledgements

The authors wish to thank Toby Boyson and Charles Harb from the University of New South Wales at the Australian Defence Force Academy for providing the frequency response data for the CRDS system. This work was supported by the Australian Research Council and the Engineering and Physical Sciences Research Council.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.