279
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Robust reliable control design for networked control system with sampling communication

, , &
Pages 2510-2522 | Received 19 Nov 2014, Accepted 01 May 2015, Published online: 30 Jul 2015
 

Abstract

In this article, the problem of robust exponential stability and reliable stabilisation for a class of continuous-time networked control systems (NCSs) with a sample-data controller and unknown time-varying sampling rate is considered. The analysis is based on average dwell-time, Lyapunov–Krasovskii functional and linear matrix inequality (LMI) technique. The delay-dependent criteria are developed for ensuring the robust exponential stability of the considered NCSs. The obtained conditions are formulated in terms of LMIs that can easily be solved by using standard software packages. Furthermore, the result is extended to study the robust stabilisation for NCS with parameter uncertainties. A state feedback controller is constructed in terms of the solution to a set of LMIs, which guarantee the robust exponential stabilisation of NCS and the controller. Finally, numerical examples are presented to illustrate the effectiveness of the obtained results.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.